対称性は、科学全般において非常に重要な概念です。この性質の重要性は、数学のみならず、物理学や化学、生物学など、数多くの分野にも応用されています。対称性の意味するところについて、数学者としてダイナミクスにおける対称性、パターン形成、カオス、数理生物学を専門とし、一般読者向けの著述の多くが訳書で日本の読者にも親しまれている、イアン・スチュアートが解説します。
In the 1800s mathematicians introduced a formal theory of symmetry: group theory. Now a branch of abstract algebra, this subject first arose in the theory of equations. Symmetry is an immensely important concept in mathematics and throughout the sciences, and its applications range across the entire subject. Symmetry governs the structure of crystals, innumerable types of pattern formation, how systems change their state as parameters vary; and fundamental physics is governed by symmetries in the laws of nature.
It is highly visual, with applications that include animal markings, locomotion, evolutionary biology, elastic buckling, waves, the shape of the Earth, and the form of galaxies. In this Very Short Introduction, Ian Stewart demonstrates its deep implications, and shows how it plays a major role in the current search to unify relativity and quantum theory.
Introduction
1: What is symmetry?
2: Origins of symmetry
3: Types of symmetry
4: Structure of groups
5: Groups and games
6: Nature's patterns
7: Nature's laws
8: Atoms of symmetry
Further reading
References
ISBN : 9780199651986
まだレビューはありません