OXFORD UNIVERSITY PRESS

ユーザーログイン

Gödel's Theorem: A Very Short Introduction [#718]
Gödel's Theorem: A Very Short Introduction [#718]
¥1,969
(税込)

現在ご注文の受付を一時的に停止しています

クルト・ゲーデル(1906-1978年)は約100年前、どのような数学体系も不完全であるとする有名な定理を発表し、数学の本質に関する一般的な前提を覆し、大きな関心を集めました。本書は今日では数学の考え方に大きな影響を与える画期的な知的業績として確立された定理を、知的・歴史的文脈に位置づけ、重要な概念を説明し、実際に述べられている内容に対する一般的な誤解を解きほぐします。この定理は哲学的にもさまざまな深い問題を提起しましたが、この定理が果たして機械に対する人間の優越性を示すものであるかどうかという問題も取り上げ、論じます。
 

  • Places Gödel's famous theorem in its intellectual and historical context, while explaining the key concepts
  • Gives two proofs of the theorem
  • Considers common misunderstandings associated with the theorem
  • Discusses the theorem's most important philosophical implications

    
Kurt Gödel first published his celebrated theorem, showing that no axiomatization can determine the whole truth and nothing but the truth concerning arithmetic, nearly a century ago. The theorem challenged prevalent presuppositions about the nature of mathematics and was consequently of considerable mathematical interest, while also raising various deep philosophical questions. Gödel's Theorem has since established itself as a landmark intellectual achievement, having a profound impact on today's mathematical ideas. Gödel and his theorem have attracted something of a cult following, though his theorem is often misunderstood.

This Very Short Introduction places the theorem in its intellectual and historical context, and explains the key concepts as well as common misunderstandings of what it actually states. Adrian Moore provides a clear statement of the theorem, presenting two proofs, each of which has something distinctive to teach about its content. Moore also discusses the most important philosophical implications of the theorem. In particular, Moore addresses the famous question of whether the theorem shows the human mind to have mathematical powers beyond those of any possible computer

目次: 

1: Introduction
2: The appeal and demands of axiomatization
3: Historical background
4: The key concepts involved in Gödel's theorem
5: The diagonal proof of Gödel's theorem
6: A second proof of Gödel's theorem, and a proof of Gödel's second theorem
7: Hilbert's programme, the human mind, and computers
8: Making sense in and of mathematics

著者について: 

A. W. Moore, Tutorial Fellow at St Hugh's College, and Professor of Philosophy at the University of Oxford

A.W. Moore is Professor of Philosophy at the University of Oxford and Tutorial Fellow in Philosophy at St Hugh's College, Oxford. He has held teaching and research positions at University College, Oxford, and King's College, Cambridge. He is joint editor, with Lucy O'Brien, of the journal Mind. In 2016 he wrote and presented the series A History of the Infinite on BBC Radio 4.

商品情報

ISBN : 9780192847850

著者: 
A. W. Moore
ページ
144 ページ
フォーマット
Paperback
サイズ
111 x 174 mm
刊行日
2022年11月
シリーズ
Very Short Introductions
カスタマーレビュー
0
(0)

同じカテゴリーの商品

カスタマーレビュー

まだレビューはありません

このページに掲載の「参考価格」は日本国内における希望小売価格です。当ウェブサイトでのご購入に対して特別価格が適用される場合、販売価格は「割引価格」として表示されます。なお、価格は予告なく変更されることがございますので、あらかじめご了承ください。

Gödel's Theorem: A Very Short Introduction [#718]

Gödel's Theorem: A Very Short Introduction [#718]

Gödel's Theorem: A Very Short Introduction [#718]