OXFORD UNIVERSITY PRESS

ユーザーログイン

Introduction to Electric Circuits (Updated edition)
Introduction to Electric Circuits (Updated edition)

Introduction to Electric Circuits (Updated edition)

著者: 
Herbert W. Jackson; Dale Temple; Brian E. Kelly
0
(0)
(税込)

First published in 1959, this classic work has been used as a core text by hundreds of thousands of college and university students enrolled in introductory circuit analysis courses. Acclaimed for its clear, concise explanations of difficult concepts, its comprehensive problem sets and exercises, and its authoritative coverage, this edition includes the latest developments in the field. With extensive new coverage of AC and DC motors and generators; a wealth of exercises, diagrams, and photos; and over 150 Multisim circuit simulations on an accompanying CD, this is the essential text for introducing electric circuits.

目次: 

PART I: THE BASIC ELECTRIC CIRCUIT
1. INTRODUCTION
Key Terms
Learning Outcomes
1-1 Circuit Diagrams
1-2 The International System of Units
1-3 Calculators for Circuit Theory
1-4 Numerical Accuracy
1-5 Scientific Notation
1-6 SI Unit Prefixes
1-7 Conversion of Units
2. CURRENT AND VOLTAGE
Key Terms
Learning Outcomes
2-1 The Nature of Charge
2-2 Free Electrons in Metals
2-3 Electric Current
2-4 The Coulomb
2-5 The Ampere
2-6 Potential Difference
2-7 The Volt
2-8 EMF, Potential Difference, and Voltage
2-9 Conventional Current and Electron Flow
3. CONDUCTORS, INSULATORS, AND SEMICONDUCTORS
Key Terms
Learning Outcomes
3-1 Conductors
3-2 Electrolytic Conduction
3-3 Insulators
3-4 Insulator Breakdown
3-5 Semiconductors
4. CELLS, BATTERIES, AND OTHER VOLTAGE SOURCES
Key Terms
Learning Outcomes
4-1 Basic Terminology
4-2 Simple Primary Cell
4-3 Carbon-Zinc and Alkaline Cells
4-4 Other Commercial Primary Cells
4-5 Secondary Cells
4-6 Capacity of Cells and Batteries
4-7 Fuel Cells
4-8 Other Voltage Sources
5. RESISTANCE AND OHM'S LAW
Key Terms
Learning Outcomes
5-1 Ohm's Law
5-2 The Nature of Resistance
5-3 Factors Governing Resistance
5-4 Resistivity
5-5 Circular Mils
5-6 American Wire Gauge
5-7 Effect of Temperature on Resistance
5-8 Temperature Coefficient of Resistance
5-9 Linear Resistors
5-10 Nonlinear Resistors
5-11 Resistor Color Code
5-12 Variable Resistors
5-13 Voltage-Current Characteristics
5-14 Applying Ohm's Law
6. WORK AND POWER
Key Terms
Learning Outcomes
6-1 Energy and Work
6-2 Power
6-3 Efficiency
6-4 The Kilowatt Hour
6-5 Relationships Among Basic Electric Units
6-6 Heating Effect of Current
PART II: RESISTANCE NETWORKS
7. SERIES AND PARALLEL CIRCUITS
Key Terms
Learning Outcomes
7-1 Resistors in Series
7-2 Voltage Drops in Series Circuits
7-3 Double-Subscript Notation
7-4 Kirchhoff's Voltage Law
7-5 Characteristics of Series Circuits
7-6 Internal Resistance
7-7 Cells in Series
7-8 Maximum Power Transfer
7-9 Resistors in Parallel
7-10 Kirchhoff's Current Law
7-11 Conductance and Conductivity
7-12 Characteristics of Parallel Circuits
7-13 Cells in Parallel
7-14 Troubleshooting
8. SERIES-PARALLEL CIRCUITS
Key Terms
Learning Outcomes
8-1 Series-Parallel Resistors
8-2 Equivalent-Circuit Method
8-3 Kirchhoff's Laws Method
8-4 Voltage-Divider Principle
8-5 Voltage Dividers
8-6 Current-Divider Principle
8-7 Cells in Series-Parallel
8-8 Troubleshooting
9. RESISTANCE NETWORKS
Key Terms
Learning Outcomes
9-1 Network Equations from Kirchhoff's Laws
9-2 Constant-Voltage Sources
9-3 Constant-Current Sources
9-4 Source Conversion
9-5 Kirchhoff's Voltage-Law Equations: Loop Procedure
9-6 Networks with More Than One Voltage Source
9-7 Loop Equations in Multisource Networks
9-8 Mesh Analysis
9-9 Kirchhoff's Current-Law Equations
9-10 Nodal Analysis
9-11 The Superposition Theorem
10. EQUIVALENT-CIRCUIT THEOREMS
Key Terms
Learning Outcomes
10-1 Thevenin's Theorem
10-2 Norton's Theorem
10-3 Dependent Sources
10-4 Delta-Wye Transformation
10-5 Troubleshooting
11. ELECTRICAL MEASUREMENT
Key Terms
Learning Outcomes
11-1 Moving-Coil Meters
11-2 The Ammeter
11-3 The Voltmeter
11-4 Voltmeter Loading Effect
11-5 Resistance Measurement
11-6 The Electrodynamometer Movement
11-7 Multimeters
PART III: CAPACITANCE AND INDUCTANCE
12. CAPACITANCE
Key Terms
Learning Outcomes
12-1 Electric Fields
12-2 Dielectrics
12-3 Capacitance
12-4 Capacitors
12-5 Factors Governing Capacitance
12-6 Dielectric Constant
12-7 Capacitors in Parallel
12-8 Capacitors in Series
13. CAPACITANCE IN DC CIRCUITS
Key Terms
Learning Outcomes
13-1 Charging a Capacitor
13-2 Rate of Change of Voltage
13-3 Time Constant
13-4 Graphical Solution for Capacitor Voltage
13-5 Discharging a Capacitor
13-6 Algebraic Solution for Capacitor Voltage
13-7 Transient Response
13-8 Energy Stored by a Capacitor
13-9 Characteristics of Capacitive DC Circuits
13-10 Troubleshooting
14. MAGNETISM
Key Terms
Learning Outcomes
14-1 Magnetic Fields
14-2 Magnetic Field around a Current-Carrying Conductor
14-3 Magnetic Flux
14-4 Magnetomotive Force
14-5 Reluctance
14-6 Permeance and Permeability
14-7 Magnetic Flux Density
14-8 Magnetic Field Strength
14-9 Diamagnetic, Paramagnetic, and Ferromagnetic Materials
14-10 Permanent Magnets
14-11 Magnetization Curves
14-12 Permeability from the BH Curve
14-13 Hysteresis
14-14 Eddy Current
14-15 Magnetic Shielding
15. MAGNETIC CIRCUITS
Key Terms
Learning Outcomes
15-1 Practical Magnetic Circuits
15-2 Long Air-Core Coils
15-3 Toroidal Coils
15-4 Linear Magnetic Circuits
15-5 Nonlinear Magnetic Circuits
15-6 Leakage Flux
15-7 Series Magnetic Circuits
15-8 Air Gaps
15-9 Parallel Magnetic Circuits
16. INDUCTANCE
Key Terms
Learning Outcomes
16-1 Electromagnetic Induction
16-2 Faraday's Law
16-3 Lenz's Law
16-4 Self-Induction
16-5 Self-Inductance
16-6 Factors Governing Inductance
16-7 Inductors in Series
16-8 Inductors in Parallel
16-9 The DC Generator
16-10 Simple DC Generators
16-11 EMF Equation
16-12 The DC Motor
16-13 Speed and Torque of a DC Motor
16-14 Types of DC Motors
16-15 Speed Characteristics of DC Motors
16-16 Torque Characteristics of DC Motors
16-17 Permanent Magnet and Brushless DC Motors
17. INDUCTANCE IN DC CIRCUITS
Key Terms
Learning Outcomes
17-1 Current in an Ideal Inductor
17-2 Rise of Current in a Practical Inductor
17-3 Time Constant
17-4 Graphical Solution for Inductor Current
17-5 Algebraic Solution for Inductor Current
17-6 Energy Stored by an Inductor
17-7 Fall of Current in an Inductive Circuit
17-8 Algebraic Solution for Discharge Current
17-9 Transient Response
17-10 Characteristics of Inductive DC Circuits
17-11 Troubleshooting
PART IV: ALTERNATING CURRENT
18. ALTERNATING CURRENT
Key Terms
Learning Outcomes
18-1 A Simple Generator
18-2 The Nature of the Induced Voltage
18-3 The Sine Wave
18-4 Peak Value of a Sine Wave
18-5 Instantaneous Value of a Sine Wave
18-6 The Radian
18-7 Instantaneous Current in a Resistor
18-8 Instantaneous Power in a Resistor
18-9 Periodic Waves
18-10 Average Value of a Periodic Wave
18-11 RMS Value of a Sine Wave
19. REACTANCE
Key Terms
Learning Outcomes
19-1 Instantaneous Current in an Ideal Inductor
19-2 Inductive Reactance
19-3 Factors Governing Inductive Reactance
19-4 Instantaneous Current in a Capacitor
19-5 Capacitive Reactance
19-6 Factors Governing Capacitive Reactance
19-7 Resistance, Inductive Reactance, and Capacitive Reactance
20. PHASORS
Key Terms
Learning Outcomes
20-1 Addition of Sine Waves
20-2 Addition of Instantaneous Values
20-3 Representing a Sine Wave by a Phasor Diagram
20-4 Letter Symbols for Phasor Quantities
20-5 Phasor Addition by Geometrical Construction
20-6 Addition of Perpendicular Phasors
20-7 Expressing Phasors with Complex Numbers
20-8 Phasor Addition by Rectangular Coordinates
20-9 Subtraction of Phasor Quantities
20-10 Multiplication and Division of Phasor Quantities
21. IMPEDANCE
Key Terms
Learning Outcomes
21-1 Resistance and Inductance in Series
21-2 Impedance
21-3 Practical Inductors
21-4 Resistance and Capacitance in Series
21-5 Resistance, Inductance, and Capacitance in Series
21-6 Resistance, Inductance, and Capacitance in Parallel
21-7 Conductance, Susceptance, and Admittance
21-8 Impedance and Admittance
21-9 Troubleshooting
22. POWER IN ALTERNATING-CURRENT CIRCUITS
Key Terms
Learning Outcomes
22-1 Power in a Resistor
22-2 Power in an Ideal Inductor
22-3 Power in a Capacitor
22-4 Power in a Circuit Containing Resistance and Reactance
22-5 The Power Triangle
22-6 Power Factor
22-7 Power Factor Correction
PART V: IMPEDANCE NETWORKS
23. SERIES AND PARALLEL IMPEDANCES
Key Terms
Learning Outcomes
23-1 Resistance and Impedance
23-2 Impedances in Series
23-3 Impedances in Parallel
23-4 Series-Parallel Impedances
23-5 Source Conversion
24. IMPEDANCE NETWORKS
Key Terms
Learning Outcomes
24-1 Loop Equations
24-2 Mesh Equations
24-3 Superposition Theorem
24-4 Thevenin's Theorem
24-5 Norton's Theorem
24-6 Nodal Analysis
24-7 Delta-Wye Transformation
25. RESONANCE
Key Terms
Learning Outcomes
25-1 Effect of Varying Frequency in a Series RLC Circuit
25-2 Series Resonance
25-3 Quality Factor
25-4 Resonant Rise of Voltage
25-5 Selectivity
25-6 Ideal Parallel-Resonant Circuits
25-7 Practical Parallel-Resonant Circuits
25-8 Selectivity of Parallel-Resonant Circuits
26. PASSIVE FILTERS (NEW!)
Key Terms
Learning Outcomes
26-1 Filters
26-2 Frequency Response Graphs
26-3 RC Low-Pass Filters
26-4 RL Low-Pass Filters
26-5 RC High-Pass Filters
26-6 RL High-Pass Filters
26-7 Band-Pass Filters
26-8 Band-Stop Filters
26-9 Practical Application of Filters
26-10 Troubleshooting
27. TRANSFORMERS
Key Terms
Learning Outcomes
27-1 Transformer Action
27-2 Transformation Ratio
27-3 Impedance Transformation
27-4 Leakage Reactance
27-5 Open-Circuit and Short-Circuit Tests
27-6 Transformer Efficiency
27-7 Effect of Loading a Transformer
27-8 Autotransformers
27-9 Troubleshooting
28. COUPLED CIRCUITS
Key Terms
Learning Outcomes
28-1 Determining Coupling Network Parameters
28-2 Open-Circuit Impedance Parameters
28-3 Short-Circuit Admittance Parameters
28-4 Hybrid Parameters
28-5 Air-Core Transformers
28-6 Mutual Inductance
28-7 Coupled Impedance
29. THREE-PHASE SYSTEMS
Key Terms
Learning Outcomes
29-1 Advantages of Polyphase Systems
29-2 Generation of Three-Phase Voltages
29-3 Double-Subscript Notation
29-4 Four-Wire Wye-Connected System
29-5 Delta-Connected Systems
29-6 Wye-Delta System
29-7 Power in a Balanced Three-Phase System
29-8 Phase Sequence
29-9 Unbalanced Three-Wire Wye Loads
29-10 The AC Generator
29-11 The Three-Phase Induction Motor
29-12 The Three-Phase Synchronous Motor
29-13 Single-Phase Motors
30. HARMONICS
Key Terms
Learning Outcomes
30-1 Nonsinusoidal Waves
30-2 Fourier Series
30-3 Addition of Harmonically Related Sine Waves
30-4 Generation of Harmonics
30-5 Harmonics in an Amplifier
30-6 Harmonics in an Iron-Core Transformer
30-7 RMS Value of a Nonsinusoidal Wave
30-8 Square Waves and Sawtooth Waves
30-9 Nonsinusoidal Waves in Linear Impedance Networks
APPENDICES
1. DETERMINANTS
2. CALCULUS DERIVATIONS
2-1 Maxium Power-Transfer Theorem
2-2 Instantaneous Voltage in a CR Circuit
2-3 Energy Stored by a Capacitor
2-4 Instantaneous Current in an LR Circuit
2-5 Energy Stored by an Inductor
2-6 RMS and Average Values of a Sine Wave
2-7 Inductive Reactance
2-8 Capacitive Reactance
2-9 General Transformer Equation
2-10 Maximum Transformer Efficiency
3. MULTISIM SCHEMATIC CAPTURE AND SIMULATION (NEW!)
ANSWERS TO SELECTED PROBLEMS
GLOSSARY
PHOTO CREDITS

著者について: 

Herbert W. Jackson published the first edition of Introduction to Electric Circuits in 1959. Known as athe father of the Ontario college system,a, Jackson taught electronics and electrical engineering technology for over forty years. In addition to authoring Introduction to Electric Circuitsaa text that would become the industry standard and shape curricula for years to followaJackson was a member of the Ontario Ministry of Education, where he oversaw the creation of the provinceas community colleges.; Dale Temple teaches electronics engineering technology at the College of the North Atlantic, where he has served as coordinator of the electronics program. Prior to working on Introduction to Electric Circuits, Temple contributed as a co-author to the Canadian editions of Boylestad and Nashelskyas Electronic Devices and Theory and Toccias Digital Systems: Principles and Applications.; Brian Kelly is formerly an instructor at the College of the North Atlantic, where, in addition to teaching, he served as coordinator for the introductory circuit analysis course. In addition to co-authoring Introduction to Electric Circuits, Kelly created the lab manual and solutions manual that accompany the text.

商品情報

著者: 
Herbert W. Jackson; Dale Temple; Brian E. Kelly
刊行日
2015年04月
カスタマーレビュー
0
(0)

同じカテゴリーの商品

カスタマーレビュー

まだレビューはありません

このページに掲載の「参考価格」は日本国内における希望小売価格です。当ウェブサイトでのご購入に対して特別価格が適用される場合、販売価格は「割引価格」として表示されます。なお、価格は予告なく変更されることがございますので、あらかじめご了承ください。

Introduction to Electric Circuits (Updated edition)

Introduction to Electric Circuits (Updated edition)

Introduction to Electric Circuits (Updated edition)