OXFORD UNIVERSITY PRESS

ユーザーログイン

Microwave Engineering

著者: 
Sushrut Das
0
(0)
(税込)

Microwave Engineering is a textbook designed for students of electronics and communication engineering for a course on radio frequency and microwave engineering (namely, Microwave Engineering, Microwave and Radar Engineering, RF Engineering, Antennas and Radar, etc.). The text can also serve as reference material for postgraduate students. The book not only covers the basics of the subject, but also discusses its present trend and the latest developments. The book comprises of 20 chapters and covers in detail, topics such as transmission line, waveguides, microwave networks, passive and active devices (both solid state and vacuum), antenna, radar, microwave communication, as well as microwave measurements and radiation hazards. It optimizes physical concepts and mathematical derivations to describe the different topics in a lucid manner. Plenty of solved examples and problems with hints are provided to assist students in solving difficult problems. The MATLAB examples will be useful for laboratory experiments.

目次: 

Dedication iii
Features of the Book iv
Preface vi
Brief Contents x
1 INTRODUCTION 1
1.1 Electromagnetic Spectrum 1
1.2 Characteristic Features of Microwaves 4
1.3 Advantages of Microwaves 5
1.4 Disadvantages of Microwaves 6
1.5 Applications of Microwaves 6
2 TRANSMISSION LINE THEORY 9
2.1 Introduction 9
2.2 Propagation of Voltages and Currents in Transmission Lines 11
2.3 Transmission Line Parameters 12
2.3.1 Per-unit-length Resistance (R) 12
2.3.2 Per-unit-length Inductance (L) 13
2.3.3 Per-unit-length Capacitance (C) and Conductance (G) 15
2.4 Transmission Line Equations 18
2.5 Solutions of Transmission Line Equations 21
2.6 Reflection and Transmission Coefficients 27
2.7 Standing Waves 31
2.8 Input Impedance of Transmission Lines 40
2.9 Attenuation and Distortion in Transmission Lines 49
2.10 Power Transmission and Loss Characterization 54
2.11 Other Transmission Line Models 56
2.12 Field Theoretic Analysis of Coaxial Transmission Lines 56
2.13 Field Theoretic Analysis of Parallel-plate Transmission Lines 59
2.14 Smith Chart 62
2.15 Transient Analysis of Transmission Lines 69
2.16 Multi-conductor Transmission Lines 76
2.17 RF Coaxial Connectors and Adaptors 78
3 TRANSMISSION LINE MATCHING NETWORKS, CONNECTORS, AND ADAPTERS 91
3.1 Introduction 91
3.2 Mismatch Losses in Transmission Lines 91
3.3 Matching with Lumped Elements 92
3.3.1 L-network 92
3.3.2 Pi-network 97
3.3.3 T-network 98
3.4 Single-stub Matching 98
3.5 Double-stub Matching 108
3.6 Quarter-wave Transformers 115
3.7 Theory of Small Reflections 121
3.8 Multisection Transformers 122
3.8.1 Binomial Multisection Matching Transformers 123
3.8.2 Chebyshev Multisection Matching Transformers 127
3.9 Tapered Lines 132
3.9.1 Exponential Taper 134
3.9.2 Triangular Taper 135
3.9.3 Chebyshev/Klopfenstein Taper 137
3.10 Synthesis of Transmission Line Tapers 139
3.10.1 Transmission Line Tapers with Double Zeros at u = +-2, +-4, +-6, ... or Triangular Tapers 142
3.10.2 Transmission Line Tapers with Zeros at u = -1, -2, -3, ...or Exponential Tapers 144
3.11 Bode-Fano Criterion 147
4 PLANAR TRANSMISSION LINES 152
4.1 Introduction 152
4.2 General Analysis of Transverse Electric and Transverse Magnetic Modes 152
4.2.1 TE Mode 157
4.2.2 TM Mode 158
4.3 Surface Waves on Grounded Dielectric Slab 159
4.3.1 TE-mode Propagation 159
4.3.2 TM-mode Propagation 165
4.4 Strip Lines 170
4.5 Microstrip Lines 180
4.6 Coupled Microstrip Lines 189
4.7 Suspended and Inverted Microstrip Lines 194
4.8 Coplanar Waveguide and Coplanar Strip Line Structures 194
4.9 Slot Line Structures 196
4.10 Lumped Elements in Microstrips 196
4.10.1 Inductors 196
4.10.2 Capacitors 199
4.10.3 Thin-film Resistors 199
5 WAVEGUIDES AND FINLINES 202
5.1 Introduction 202
5.2 Formation of Waveguides from Two-wire Transmission Lines 203
5.3 Parallel-plate Waveguides 204
5.3.1 Propagation of TEM Waves 204
5.3.2 Propagation of TE Waves 206
5.3.3 Propagation of TM Waves 210
5.4 Introduction to Rectangular Waveguides 215
5.5 Propagation of TE Modes in Rectangular Waveguides 215
5.6 Propagation of TM Modes in Rectangular Waveguides 221
5.7 Cut-off Frequencies, Cut-off Wavelengths, and Degenerate Modes 226
5.8 Dominant Mode in Rectangular Waveguides 230
5.8.1 TE Mode 230
5.8.2 TM Mode 230
5.9 Physical Explanation for Wave Propagation in Rectangular Waveguides 231
5.10 Guided Wavelengths 233
5.11 Characteristic Impedances of TE and TM Modes 234
5.12 Phase Velocity and Group Velocity 236
5.13 Power Flow in Rectangular Waveguides 237
5.14 Power-handling Capability of Waveguides 240
5.15 Waveguide Attenuation 241
5.16 Quality Factor Q of Waveguides 246
5.17 Non-existence of TEM Modes in Hollow Waveguides 247
5.18 Transmission Line Analogy of Waveguides 247
5.18.1 TE Equivalent Model 247
5.18.2 TM Equivalent Model 249
5.19 Excitation of Modes in Rectangular Waveguides 251
5.20 Waveguide Terminations 254
5.20.1 Matched Termination 254
5.20.2 Short Circuit 255
5.20.3 Short-circuit Plunger 255
5.20.4 Open Circuit 256
5.21 Impedance Matching in Waveguides 257
5.21.1 Irises 257
5.21.2 Posts and Screws 259
5.21.3 Waveguide Stubs 260
5.21.4 Waveguide Quarter-wave Impedance Transformers 260
5.21.5 Waveguide Tapers 261
5.22 Waveguide Bends and Twists 261
5.23 Waveguide Flanges 262
5.23.1 Cover Flanges 262
5.23.2 Choke Flanges 262
5.24 Introduction to Circular Cylindrical Waveguides 263
5.25 Propagation of TE Mode in Circular Waveguides 264
5.26 Propagation of TM Mode in Circular Waveguides 269
5.27 Mode Numbering System in Circular Waveguides 275
5.28 Power Transmission in Circular Waveguides 275
5.29 Excitation of Modes in Circular Waveguides 278
5.30 Waveguide Mode Filters 278
5.31 Waveguide Transition 279
5.32 Waveguide Rotary Joints 279
5.33 Comparison of Rectangular and Circular Waveguides 280
5.34 Other Waveguides 281
5.34.1 Ridge Waveguides 281
5.34.2 Dielectric Rod Waveguides 282
5.35 Advantages and Disadvantages of Waveguides 283
5.36 Finlines 284
6 MICROWAVE RESONATORS 292
6.1 Introduction 292
6.2 Designing High-frequency Resonators 292
6.3 Q-factor of Cavity Resonators 294
6.4 Transmission Line Resonators 296
6.4.1 Short-circuited Half-wavelength Transmission Line Resonators 296
6.4.2 Short-circuited Quarter-wavelength Transmission Line Resonators 298
6.4.3 Open-circuited Half-wavelength Transmission Line Resonators 299
6.5 Waveguide Cavities 300
6.5.1 Rectangular Waveguide Cavities 300
6.5.2 Circular Waveguide Cavities 308
6.6 Dielectric Resonators 314
6.7 Coupled Cavities 316
6.7.1 Reflection Cavities 316
6.7.2 Transmission Cavities 317
6.8 Re-entrant Cavities 318
6.9 Hole and Slot Cavities 319
6.10 Microstrip Resonators 320
6.10.1 Half-wavelength Gap-coupled Microstrip Line Resonators 320
6.10.2 Rectangular Microstrip Patch Resonators 320
6.10.3 Circular Microstrip Patch Resonators 322
6.10.4 Microstrip Ring Resonators 324
6.11 Excitation of Resonators 325
6.11.1 Gap-coupled Microstrip Resonators 326
6.11.2 Aperture-coupled Cavities 329
7 MICROWAVE NETWORK REPRESENTATIONS 336
7.1 Introduction 336
7.2 Impedance and Equivalent Voltage and Current 337
7.3 Impedance and Admittance Parameters 339
7.4 Scattering Matrix 341
7.5 Properties of Scattering Parameters for Reciprocal and Lossless Networks 344
7.6 Generalized Scattering Parameters 348
7.7 S Parameters of Two-port Networks with Mismatched Loads 349
7.8 Transmission or ABCD matrix 350
8 MICROWAVE POWER DIVIDERS AND COUPLERS 359
8.1 Introduction 359
8.2 T-junctions 359
8.2.1 E-plane T-junctions 360
8.2.2 H-plane T-junction 361
8.3 Wilkinson Power Dividers 366
8.4 Waveguide Magic T-junctions 370
8.5 Rat-race Junctions 376
8.6 Directional Couplers 377
8.7 Bethe-hole Couplers 380
8.8 Two-hole Directional Couplers 385
8.9 Multi-hole Directional Couplers 386
8.9.1 Binomial Response 388
8.9.2 Chebyshev Response 388
8.10 Quadrature (90 ) Hybrids 393
8.11 Coupled-line Directional Couplers 394
8.12 Multi-section Coupled-line Directional Couplers 399
8.13 Lange Couplers 402
8.14 Other Couplers and Power Dividers 404
8.14.1 Moreno Crossed Guide Coupler 404
8.14.2 Schwinger Reversed-phase Coupler 404
8.14.3 Riblet Short-slot Coupler 405
8.14.4 Ortho-modal Coupler 405
8.14.5 Turnstile Junction 405
9 MICROWAVE FILTERS 409
9.1 Introduction 409
9.2 Periodic Structures 410
9.3 Filter Parameters 415
9.4 Lossless Ladder Network Synthesis 415
9.5 Filter Design by Image Parameter Method 419
9.5.1 Constant-k Filter Sections 422
9.5.2 m-Derived Filter Sections 423
9.5.3 Composite Filters 426
9.6 Filter Design by Insertion Loss Method 427
9.6.1 Maximally Flat Low-pass Filter Design 428
9.6.2 Chebyshev Low-pass Filters 431
9.6.3 Inverse Chebyshev Filters 433
9.6.4 Elliptic Filters 433
9.6.5 Linear Phase Filters 434
9.7 Filter Transformations 435
9.7.1 Impedance Scaling 435
9.7.2 Frequency Scaling 435
9.7.3 Low- to High-pass Transformation 436
9.7.4 Low- to Band-pass Transformation 436
9.7.5 Low-pass to Band-stop Transformation 437
9.8 Filter Implementation 439
9.8.1 Richard Transformation 440
9.8.2 Kuroda Identity 440
9.8.3 Impedance and Admittance Inverters 444
9.9 Coupled Line Filters 449
9.10 Coupled Resonator Filters 460
9.10.1 Transmission Line Resonator Filters 460
9.10.2 Capacitively Coupled Microstrip Resonator Filters 463
9.11 Other Filters 466
9.11.1 Stepped Impedance Low-pass Filters 466
9.11.2 YIG Filters 467
9.11.3 Quarter-wave Coupled Cavity Band-pass Filters 467
9.11.4 Direct-coupled Cavity Waveguide Filters 467
10 MICROWAVE NON-RECIPROCAL DEVICES 471
10.1 Introduction 471
10.2 Plane Wave Propagation in Infinitely Extended Ferrite Medium 472
10.2.1 Propagation Along Direction of Bias 473
10.2.2 Propagation Transverse to Bias 477
10.3 Ferrite Isolators 478
10.3.1 Resonance Isolator 479
10.3.2 Field Displacement Isolator 480
10.3.3 Faraday Rotator Isolator 480
10.4 Ferrite Phase Shifters 481
10.4.1 Non-reciprocal Latching Phase Shifter 481
10.4.2 Reggia-Spencer Reciprocal Phase Shifter 481
10.5 Ferrite Gyrators 482
10.6 Ferrite Circulators 483
10.6.1 Faraday Rotator Circulator 484
10.6.2 Turnstile Junction Circulator 486
10.7 Quarter- and Half-wave Plates 487
10.8 Precision Differential Phase Shifters 491
10.9 Precision Attenuators 493
10.10 Other Phase Shifters and Attenuators 493
10.10.1 Dielectric Phase Shifter 493
10.10.2 Hybrid Phase Shifter 494
10.10.3 Resistive Card Attenuator 494
11 MICROWAVE LINEAR BEAM TUBES 497
11.1 Introduction 497
11.2 High-frequency Limitation of Conventional Tubes 498
11.2.1 Lead Inductance and Inter-electrode Capacitance Effect 498
11.2.2 Gain-Bandwidth Product Limitation 500
11.2.3 RF Loss 501
11.2.3.1 Transit Angle Effect 501
11.3 Klystron Amplifiers 502
11.4 Multi-cavity Klystrons 519
11.5 Two-cavity Klystron Oscillators 525
11.6 Reflex Klystrons 526
11.7 Helix Travelling-wave Tubes 535
11.8 Coupled-cavity Travelling-wave Tubes 548
11.9 High-power Gridded Control Travelling-wave Tubes 549
11.10 O-type Backward Wave Oscillators 551
12 MICROWAVE CROSSED-FIELD TUBES 557
12.1 Introduction 557
12.2 Magnetron Oscillators 558
12.2.1 Cylindrical Magnetron 558
12.2.2 Linear Magnetron 568
12.2.3 Coaxial Magnetron 572
12.2.4 Inverted Coaxial Magnetron 573
12.2.5 Voltage Tunable Magnetron 575
12.2.6 Frequency Agile Magnetron 576
12.2.7 Rising-sun Magnetron 577
12.2.8 Negative Resistance Magnetron 577
12.3 Forward-wave Crossed-field Amplifiers 578
12.4 Backward-wave Crossed-field Amplifiers 581
12.5 Backward-wave Crossed-field Oscillators 582
12.5.1 Linear M-carcinotron 583
12.5.2 Circular M-carcinotron 583
12.6 Gyrotrons 585
13 MICROWAVE SOLID-STATE DIODES 590
13.1 Introduction 590
13.2 Tunnel and Backward Diodes 592
13.3 GaAs Gunn Effect Diodes 599
13.3.1 Ridley-Watkins-Hilsum Theory 599
13.3.2 Formation and Properties of High-field Domain 603
13.3.3 Modes of Operation 604
13.3.3.1 Gunn Oscillator Mode 604
13.3.3.2 Limited Space Charge Accumulation Mode 607
13.3.3.3 Stable Amplification Mode 608
13.3.3.4 Bias Circuit Oscillation Mode 608
13.3.4 Construction and Equivalent Circuit of Gunn Diode 608
13.3.5 Gunn Oscillator Circuit 609
13.3.6 Applications of Gunn Diode 612
13.3.7 Characteristics of Gunn Diode 613
13.4 InP Diodes 613
13.5 Read Diodes 614
13.5.1 Operation of Read Oscillators 614
13.5.2 Power and Efficiency of Read Diodes 616
13.5.3 Other IMPATT Diodes 617
13.5.3.1 Fabrication and Construction of p+-n-n+IMPATT Diodes 617
13.5.3.2 Oscillator Arrangement for IMPATT Diodes 619
13.5.3.3 Application of IMPATT Diodes 619
13.5.3.4 Disadvantages of IMPATT Diodes 619
13.5.3.5 Characteristics of IMPATT Diodes 620
13.6 TRAPATT Diodes 620
13.6.1 Characteristics 623
13.7 BARITT Diodes 623
13.7.1 Characteristics 625
13.8 Schottky Barrier Diodes 626
13.9 PIN Diodes 629
13.10 Varactor Diodes 638
13.11 Parametric Amplifiers 642
13.11.1 Manley-Rowe Power Relation 643
13.11.2 Linearized Equations for Parametric Amplifiers 647
13.11.3 Parametric Up-converter 648
13.11.4 Negative Resistance Parametric Amplifiers 654
13.11.5 Comparison between Different Parametric Amplifiers 658
13.11.6 Limitations 658
13.12 Other Semiconductor Diodes 658
13.12.1 Step Recovery Diodes 658
13.12.2 Noise Diodes 659
14 MICROWAVE SOLID-STATE TRANSISTORS AND MASERS 663
14.1 Introduction 663
14.2 Bipolar Junction Transistors 665
14.2.1 Physical Structure and Operation 665
14.2.2 Transistor Biasing 667
14.2.3 Important Parameters 668
14.2.4 High-frequency Noise Characteristics 668
14.2.5 Frequency Limitations 670
14.2.6 Typical Characteristics 671
14.3 Heterojunction Bipolar Transistors 672
14.3.1 Physical Structure 672
14.3.2 Operating Principle 672
14.3.3 Important Parameters 674
14.3.4 High-frequency Noise Characteristics 675
14.4 Junction Field Effect Transistors 675
14.4.1 Physical Structure 676
14.4.2 Important Parameters 676
14.5 Metal-Semiconductor Field Effect Transistors 678
14.5.1 Physical Structure 679
14.5.2 Important Parameters 680
14.5.3 High-frequency Noise Characteristics 682
14.6 High-electron-mobility Transistors 683
14.6.1 Physical Structure 683
14.6.2 Important Parameters 685
14.6.3 High-frequency Noise Characteristics 686
14.7 Metal-oxide-Semiconductor Field Effect Transistors 687
14.7.1 Physical Structure 687
14.7.2 Important Parameters 689
14.8 Microwave Amplification by Stimulated Emission of Radiation 691
14.8.1 Ammonia MASER 691
14.8.2 Ruby MASER 692
15 ACTIVE MICROWAVE CIRCUITS AND MONOLITHIC MICROWAVE INTEGRATED CIRCUIT 696
15.1 Introduction 696
15.2 Detectors and Mixers 697
15.2.1 Diode Rectifier 698
15.2.2 Diode AM Detector 699
15.2.3 Single-ended Mixer 701
15.2.4 Balanced Mixer 704
15.2.5 Image Rejection Mixer 707
15.2.6 Double Balanced Mixer 708
15.2.7 Anti-parallel Diode Mixer 708
15.2.8 FET Mixers 709
15.3 Stability and Gain of Amplifiers 713
15.3.1 Power Gain 713
15.3.2 Stability 720
15.4 Single-stage Transistor Amplifier Design 728
15.4.1 Design for Maximum Gain 728
15.4.2 Design for Specified Gain 731
15.4.3 Design of Low-noise Amplifiers 737
15.5 Broadband Transistor Amplifier Design 741
15.5.1 Balanced Amplifiers 742
15.5.2 Distributed Amplifiers 743
15.6 Oscillator Design 751
15.6.1 One-port Negative-resistance Oscillators 751
15.6.2 Dielectric Resonator Oscillators 752
15.7 MMIC-Material, Growth, and Fabrication 753
15.7.1 Diffusion and Ion Implantation 754
15.7.2 Epitaxial Growth 754
15.7.3 Lithography 755
15.7.4 Etching and Photo Resist 755
15.7.5 Deposition 755
16 MICROWAVE PROPAGATION AND COMMUNICATION SYSTEMS 758
16.1 Introduction 758
16.2 Effect of Atmosphere on Propagation 760
16.3 Ground Wave and Sky Wave Propagation 761
16.4 Space Wave Propagation 763
16.5 Scattering Propagation 768
16.6 Duct Propagation 770
16.7 Transmission Interference and Signal Damping 771
16.7.1 Neighbouring Channel and Co-channel Interference 771
16.7.2 Fading of Space Wave Signals 771
16.8 Basic Microwave Communication Systems 774
16.8.1 Amplitude-modulated Systems 774
16.8.2 Frequency Division Multiplexed System 775
16.8.3 Microwave Repeaters 775
16.9 Satellite Communication 777
16.9.1 Satellite Orbit 779
16.9.2 Frequencies of Satellite Communication 780
16.9.3 Satellite Altitude/Station Keeping 781
16.9.4 Transmission Path 781
16.9.5 Link Design-Friis Power Transmission Equation 782
16.9.6 Ground Station 783
16.9.7 Satellite Antenna 784
16.10 Cellular Radio Systems 784
17 RADAR AND OTHER APPLICATIONS OF MICROWAVE 788
17.1 Introduction 788
17.2 Simple RADAR Systems 791
17.3 RADAR Range Equation 793
17.4 RADAR System Losses 797
17.5 Detection of Signals in Noise 798
17.6 Doppler Effect and CW RADAR 800
17.7 Multiple-frequency CW RADAR 803
17.8 Frequency-modulated CW RADAR 805
17.9 Moving Target Indicator RADAR 807
17.10 Pulsed RADAR System 814
17.11 RADAR Displays 817
17.11.1 A-scope 818
17.11.2 Planned Position Indicator Display 819
17.11.3 B-scope Display 819
17.11.4 C-scope Display 819
17.11.5 D-scope Display 819
17.12 Tracking with RADAR 820
17.12.1 Sequential Lobing 822
17.12.2 Conical Scan 822
17.12.3 Simultaneous Lobing or Monopulse Tracking 824
17.12.4 Track While Scan 827
17.13 Electronic Countermeasure and Electronic Counter Countermeasure 828
17.13.1 Noise Jamming 828
17.13.2 Repeater Jamming 830
17.13.3 Passive ECM 831
17.14 Modern RADAR Systems 832
17.15 Applications of RADAR 833
17.16 Radiometry 834
17.16.1 Total Power Radiometer 835
17.16.2 Dicke Radiometer 836
17.17 Other Applications of Microwave 837
17.17.1 Microwave Heating 837
17.17.2 Thickness Measurement 838
17.17.3 Measurement of Wire Diameter 839
17.17.4 Measurement of Thickness of Dielectric Sheet 840
17.17.5 Moisture Content Measurement 840
18 MICROWAVE ANTENNAS 845
18.1 Introduction 845
18.2 Radiation Mechanism 846
18.3 Antenna Parameters 847
18.3.1 Radiation Pattern 847
18.3.2 Radiation Intensity 849
18.3.3 Directive Gain and Directivity 849
18.3.4 Power Gain 849
18.3.5 Effective Area and Aperture Efficiency 850
18.3.6 Antenna Efficiency 850
18.3.7 Antenna Gain 850
18.3.8 Effective Noise Temperature 851
18.3.9 Antenna Polarization 851
18.3.10 Antenna Impedance 851
18.3.11 Bandwidth 851
18.3.12 Effective Isotropic Radiated Power 851
18.3.13 Space Loss 851
18.4 Half-wave Dipole and Quarter-wave Monopole Antennas 852
18.5 Loop Antennas 857
18.6 Helical Antennas 859
18.6.1 Normal Mode 860
18.6.2 Axial Mode 861
18.7 Yagi-Uda Antennas 863
18.8 Log-periodic Antennas 864
18.9 Horn Antennas 867
18.10 Reflector Antennas 869
18.10.1 Corner Reflector Antenna 869
18.10.2 Parabolic Reflector Antenna 870
18.11 Microstrip Patch Antennas 875
18.12 Lens Antennas 877
18.12.1 Non-metallic Dielectric Lens Antenna 878
18.12.2 Artificial Dielectric Lens Antennas 879
18.12.3 E-plane Metal Plate Lens Antennas 882
18.13 Slot Antennas 883
18.14 Array Antennas and Concept of Phased Arrays 884
19 MICROWAVE MEASUREMENTS 892
19.1 Introduction 892
19.2 Tuned Detectors 892
19.3 Slotted Line Carriage 894
19.4 VSWR Meter 894
19.5 Spectrum Analysers 895
19.6 Network Analysers 897
19.7 Power Meters 899
19.7.1 Schottky Barrier Diode Sensor 899
19.7.2 Bolometer Sensor 899
19.7.3 Bolometer Bridge 901
19.7.4 Thermocouple 902
19.8 Frequency Counters 902
19.9 Microwave Sources 903
19.10 Microwave Amplifiers 903
19.11 High-power Measurement by Calorimetric Method 904
19.12 Measurement of Insertion Loss and Attenuation 904
19.13 Measurement of VSWR 906
19.13.1 Measurement of Low VSWR 907
19.13.2 Measurement of High VSWR 908
19.14 Measurement of Return Loss by Reflectometer 910
19.15 Measurement of Phase Shift 912
19.16 Measurement of Impedance 913
19.16.1 Slotted Line Method 913
19.16.2 Impedance Measurement of Reactive Discontinuity 914
19.17 Measurement of Frequency 915
19.17.1 Slotted Line Method 915
19.17.2 Wavemeter Method 915
19.17.3 Transfer Oscillator Method 916
19.18 Measurement of Cavity Q 917
19.18.1 Slotted Line Measurement Technique 917
19.18.2 Measurement of Q from Transmitted Power 919
19.18.2.1 CW Measurement 919
19.18.2.2 Swept-frequency Measurement 920
19.18.2.3 Swept-frequency Measurement Using Electronic Frequency Marker 921
19.18.2.4 Q Measurement by Measuring Phase Shift of Modulation Envelope of Transmitted Signal 924
19.18.3 Decrement Method for Q Measurement 924
19.19 Measurement of Dielectric Constant 925
19.19.1 Waveguide Method 925
19.19.2 Cavity Perturbation Method 927
19.20 Measurement of Scattering Parameters Using Network Analysers 929
19.21 Measurement of Noise Factor 930
19.22 Antenna Measurements 931
19.22.1 Measurement of Radiation Pattern 932
19.22.2 Phase Measurement 932
19.22.3 Gain Measurement 932
19.22.3.1 Standard Antenna Method 932
19.23 Measurement of Radar Cross section 934
20 MICROWAVE RADIATION HAZARDS 938
20.1 Introduction 938
20.2 Hazards of Electromagnetic Radiation to Ordnance and Fuel 938
20.3 Hazards of Electromagnetic Radiation to Personnel 939
20.4 Radiation Hazard Limits and Regulations 940
20.5 Radiation Protection 941
Appendix A: Wheeler's Incremental Inductance Rule 942
Appendix B: ABCD Parameters of Some Two-port Networks 944
Appendix C: Interrelation between different Two-port Network Parameters 945
Answers to Objective-type Questions 947
Answers to Problems 949
Bibliography 953
Index 955

著者について: 

Sushrut Das is Assistant Professor in the Department of Electronics Engineering, Indian School of Mines, Dhanbad. A PhD from IIT Kharagpur, he has published a large number of technical papers in reputed journals and conferences. He also has the reputation of being a part of different projects sponsored by the government of India. Dr Das is also the recipient of the URSI (International Union of Radio Science) Young Scientist Award in Istanbul, Turkey. His areas of interest are electromagnetics, antennas, microwave circuits, numerical techniques in electromagnetics, and electromagnetic interference and compatibility. In addition, he is a member of the Institute of Electrical and Electronics Engineers (IEEE).

商品情報

著者: 
Sushrut Das
刊行日
2015年02月
カスタマーレビュー
0
(0)

同じカテゴリーの商品

カスタマーレビュー

まだレビューはありません

このページに掲載の「参考価格」は日本国内における希望小売価格です。当ウェブサイトでのご購入に対して特別価格が適用される場合、販売価格は「割引価格」として表示されます。なお、価格は予告なく変更されることがございますので、あらかじめご了承ください。

Microwave Engineering