OXFORD UNIVERSITY PRESS

Elliptic Operators and Lie Groups

ISBN : 9780198535911

参考価格(税込): 
¥20,999
著者: 
Derek W. Robinson
ページ
570 ページ
フォーマット
Hardcover
サイズ
161 x 241 mm
刊行日
1991年08月
シリーズ
Oxford Mathematical Monographs
メール送信
印刷

Elliptic operators arise naturally in several different mathematical settings, notably in the representation theory of Lie groups, the study of evolution equations, and the examination of Riemannian manifolds. This book develops the basic theory of elliptic operators on Lie groups and thereby extends the conventional theory of parabolic evolution equations to a natural non-commutative context. In order to achieve this goal, the author presents a synthesis of ideas from partial differential equations, harmonic analysis, functional analysis, and the theory of Lie groups. He begins by discussing the abstract theory of general operators with complex coefficients before concentrating on the central case of second-order operators with real coefficients. A full discussion of second-order subellilptic operators is also given. Prerequisites are a familiarity with basic semigroup theory, the elementary theory of Lie groups, and a firm grounding in functional analysis as might be gained from the first year of a graduate course.

目次: 

Introduction
Elliptic operators
Analytic elements
Semigroup kernels
Second-order operators
Elliptic operators with variable coefficients
Appendices.

このページに掲載の「参考価格」は日本国内における希望小売価格です。当ウェブサイトでのご購入に対して特別価格が適用される場合、販売価格は「割引価格」として表示されます。なお、価格は予告なく変更されることがございますので、あらかじめご了承ください。