OXFORD UNIVERSITY PRESS

Waves in Metamaterials

ISBN : 9780198705017

Price(incl.tax): 
¥8,305
Author: 
Laszlo Solymar; Ekaterina Shamonina
Pages
416 Pages
Format
Paperback
Size
190 x 247 mm
Pub date
Apr 2014
Send mail
Print

Metamaterials is a young subject born in the 21st century. It is concerned with artificial materials which can have electrical and magnetic properties difficult or impossible to find in nature. The building blocks in most cases are resonant elements much smaller than the wavelength of the electromagnetic wave. The book offers a comprehensive treatment of all aspects of research in this field at a level that should appeal to final year undergraduates in physics or in electrical and electronic engineering. The mathematics is kept at a minimum; the aim is to explain the physics in simple terms and enumerate the major advances. It can be profitably read by graduate and post-graduate students in order to find out what has been done in the field outside their speciality, and by experts who may gain new insight about the inter-relationship of the physical phenomena involved.

Index: 

1. Basic concepts and basic equations
2. A bird's-eye view of metamaterials
3. Plasmon-polaritons
4. Small resonators
5. Subwavelength imaging
6. Phenomena in waveguides
7. Magnetoinductive waves I
8. Magnetoinductive waves II
9. Seven topics in search of a chapter
10. A historical review
Appendix A: Acronyms
Appendix B: Field at the centre of a cubical lattice of identical dipoles
Appendix C: Derivation of material parameters from reflection and transmission coefficients
Appendix D: How does surface charge appear in the boundary conditions?
Appendix E: The Brewster wave
Appendix F: The electrostatic limit
Appendix G: Alternative derivation of the dispersion equation for SPPs for a dielectric-metal-dielectric structure: presence of a surface charge
Appendix H: Electric dipole moment induced by a magnetic field perpendicular to the plane of the SRR
Appendix I: Average dielectric constants of a multilayer structure
Appendix J: Derivation of mutual inductance between two magnetic dipoles in the presence of retardation

About the author: 

Laszlo Solymar was born in 1930 in Budapest. He is Emeritus Professor of Applied Electromagnetism at the University of Oxford and Visiting Professor and Senior Research Fellow at Imperial College, London. He graduated from the Technical University of Budapest in 1952 and received the equivalent of a Ph.D in 1956 from the Hungarian Academy of Sciences. In 1956 he settled in England where he worked first in industry and later at the University of Oxford. He did research on antennas, microwaves, superconductors, holographic gratings, photorefractive materials, and metamaterials. He has held visiting professorships at the Universities of Paris, Copenhagen, Osnabruck, Berlin, Madrid and Budapest. He published 8 books and over 250 papers. He has been a Fellow of the Royal Society since 1995. He received the Faraday Medal of the Institution of Electrical Engineers in 1992.; Ekaterina Shamonina was born in 1970 in Tver, Russia. She is Professor of Engineering Science at the University of Oxford. She graduated in 1993 in Physics at the Moscow State University and received her doctorate in 1998 from the University of Osnabruck, Germany. In 2000 she was awarded the Emmy Noether Fellowship from the German Research Council. She spent the first leg of the fellowship (20002002) at the University of Oxford. After a further six months at Imperial College, London she returned to the University of Osnabruck where she built up a research group working on Metamaterials. She completed her habilitation in Theoretical Physics in 2006, was appointed a Professor in Advanced Optical Technologies at the University of Erlangen-Nurnberg (20082011) and a Leverhulme Reader in Metamaterials at Imperial College London (20112013). Her main research areas apart from metamaterials have been amorphous semiconductors, photorefractive materials, antennas and plasmonics.

The price listed on this page is the recommended retail price for Japan. When a discount is applied, the discounted price is indicated as “Discount price”. Prices are subject to change without notice.