OXFORD UNIVERSITY PRESS

Riemann Surfaces

ISBN : 9780198526391

Price(incl.tax): 
¥16,797
Author: 
Simon K. Donaldson
Pages
304 Pages
Format
Hardcover
Size
160 x 240 mm
Pub date
Mar 2011
Series
Oxford Graduate Texts in Mathematics
Send mail
Print

The theory of Riemann surfaces occupies a very special place in mathematics. It is a culmination of much of traditional calculus, making surprising connections with geometry and arithmetic. It is an extremely useful part of mathematics, knowledge of which is needed by specialists in many other fields. It provides a model for a large number of more recent developments in areas including manifold topology, global analysis, algebraic geometry, Riemannian geometry, and diverse topics in mathematical physics. This graduate text on Riemann surface theory proves the fundamental analytical results on the existence of meromorphic functions and the Uniformisation Theorem. The approach taken emphasises PDE methods, applicable more generally in global analysis. The connection with geometric topology, and in particular the role of the mapping class group, is also explained. To this end, some more sophisticated topics have been included, compared with traditional texts at this level. While the treatment is novel, the roots of the subject in traditional calculus and complex analysis are kept well in mind. Part I sets up the interplay between complex analysis and topology, with the latter treated informally. Part II works as a rapid first course in Riemann surface theory, including elliptic curves. The core of the book is contained in Part III, where the fundamental analytical results are proved. Following this section, the remainder of the text illustrates various facets of the more advanced theory.

Index: 

I PRELIMINARIES
1. Holomorphic Functions
2. Surface Topology
II BASIC THEORY
3. Basic Definitions
4. Maps between Riemann Surfaces
5. Calculus on Surfaces
6. Elliptic functions and integrals
7. Applications of the Euler characteristic
III DEEPER THEORY
8. Meromorphic Functions and the Main Theorem for Compact Riemann Surfaces
9. Proof of the Main Theorem
10. The Uniformisation Theorem
IV FURTHER DEVELOPMENTS
11. Contrasts in Riemann Surface Theory
12. Divisors, Line Bundles and Jacobians
13. Moduli and Deformations
14. Mappings and Moduli
15. Ordinary Differential Equations
Bibliography
Index

About the author: 

Simon Donaldson gained a BA from Cambridge in 1979. In 1980 he began graduate work in Oxford, supervised by Nigel Hitchin and Sir Michael Atiyah. His PhD thesis studied mathematical aspects of Yang-Mills theory. In 1986, aged 29, he was awarded a Fields Medal and was elected to the Royal Society. He was Wallis Professor of Mathematics in Oxford between 1985 and 1998 when he moved to Imperial College London. Most of his work since has been on the interface between differential geometry and complex algebraic geometry. The recipient of numerous awards, including the Shaw Prize in 2009 with Clifford Taubes, he is also a Foreign Member of the US, French & Swedish academies. Donaldson has supervised more than 40 doctoral students, many of whom have gone on to become leading figures in research.

The price listed on this page is the recommended retail price for Japan. When a discount is applied, the discounted price is indicated as “Discount price”. Prices are subject to change without notice.